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Abstract
We have developed a variant transfer matrix method that is suitable for
transport through multi-probe systems. Using this method, we have
numerically studied the quantum spin Hall effect (QSHE) on 2D graphene
with both intrinsic (Vso) and Rashba (Vr) spin–orbit (SO) couplings. The
integer QSHE arises in the presence of intrinsic SO interaction and is
gradually destroyed by the Rashba SO interaction and disorder fluctuation.
We have numerically determined the phase boundaries separating integer
QSHE and spin Hall liquid. We have found that when Vso � 0.2t with t the
hopping constant the energy gap needed for the integer QSHE is the largest
satisfying |E| < t . For smaller Vso the energy gap decreases linearly. In the
presence of Rashba SO interaction or disorders, the energy gap diminishes.
With Rashba SO interaction the integer QSHE is robust at the largest energy
within the energy gap while at the smallest energy within the energy gap the
integer QSHE is insensitive to the disorder.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Graphene is a two-dimensional honeycomb lattice of a single-
atomic carbon layer and has a special band structure. With
more and more experimental discoveries and theoretical
predictions [1–6], there is currently intense interest in
electronic properties of the graphene sheet. In particular, the
spin Hall effect (SHE) has the potential to provide a purely
electrical means to control the spin of electrons in the absence
of non-ferromagnetic materials and magnetic field [7]. This
is because the spin–orbit interaction in the graphene exerts
a torque on the spin of the electron, whose precessing leads
to a spin polarized current. In a four-probe device, this
spin polarized current can lead to a pure spin current without
accompanying charge current [8]. It has been proposed by
Haldane [9] that a quantum Hall effect may exist in the absence
of magnetic field. Similarly, an integer quantum spin Hall
effect can exist on a honeycomb lattice when the intrinsic spin–
orbit interaction is present [7, 10]. In the presence of disorder
the charge conductance of mesoscopic conductors shows
universal features with a universal conductance fluctuation [11]
and the spin Hall conductance also fluctuates with a universal
value [12] in the presence of spin–orbit interaction. The
presence of disorder can also destroy the integer quantum spin

Hall effect and quantum Hall effect [13] for a graphene system
with intrinsic spin–orbit interaction [7]. Hence it is of interest
to map out the phase diagram for the integer quantum spin
Hall effect. In this paper, we investigate the disorder effect on
the spin Hall current for a four-probe graphene system in the
presence of intrinsic and/or Rashba SO interactions, denoted as
Vso and Vr, respectively. For such a system, the conventional
transfer matrix method can not be used. So the direct matrix
inversion method must be used to obtain the Green function
that is needed for the transport properties. As a result, the
simulation of a multi-probe system using the direct method is
very calculationally demanding.

In this paper, we develop an algorithm based on the
idea of the transfer matrix that is much faster than the direct
method. As an application, we have numerically mapped out
the phase diagram for a two-dimensional honeycomb lattice
in the presence of the intrinsic and/or Rashba SO interactions
and disorders. When turning on the Rashba SO interaction, we
found that the energy gap needed for the IQSHE is |E | < t
for Vso � 0.2t and decreases linearly when Vso < 0.2t . In the
presence of Rashba SO interaction, the phase diagram (E, Vr)

is asymmetric about the Fermi energy. The IQSHE is more
difficult to destroy at the largest energy of the energy gap. In
the presence of disorder, the phase diagram (E, W ) is again
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asymmetric about the Fermi energy but it is the smallest energy
of the energy gap that is robust against the disorder fluctuation.

2. Theoretical formalism

In the tight-binding representation, the Hamiltonian for the 2D
honeycomb lattice of the graphene structure can be written
as [7, 9]

H = −t
∑

<i j>

c†
i c j + 2i√

3
Vso

∑

�i j�
c†

i σ ·(dk j×dik)c j

+ i Vr

∑

<i j>

c†
i êz · (σ×di j )c j +

∑

i

εi c
†
i ci (1)

where c†
i (ci) is the electron creation (annihilation) operator and

the σ are Pauli matrices. The first term is due to the nearest
hopping. The second term is the intrinsic spin–orbit interaction
that involves the next nearest sites. Here i and j are two next
nearest neighbor sites, k is the common nearest neighbor of i
and j , and dik describes a vector pointing from k to i . The third
term is due to the Rashba spin–orbit coupling. The last term
is the on-site energy, where εi is a random on-site potential
uniformly distributed in the interval [−W/2, W/2]. In this
Hamiltonian, we have set the lattice constant to be unity.

We consider a four-probe device as shown schematically
in figure 1(a). The four probes are exactly the extension from
the central scattering region; i.e., the probes are graphene
ribbons. The number of sites in the scattering region is denoted
as N = nx × ny , where there are nx = 8 × n + 1 sites on
ny = 4 × n chains (figure 1(a) shows the cell for n = 1)1. We
apply external bias voltages Vi with i = 1, 2, 3, 4 at the four
different probes as Vi = (v/2, 0,−v/2, 0). In the presence
of Rashba SO interaction, the spin is not a good quantum
number. As a result, the spin current is not conserved using
the conventional definition. Hence we switch off the Rashba
SO interaction in the second and fourth probes. Similar to
the setup of [7], our setup can generate an integer quantum
spin Hall effect. The difference between the setup of [7]
and ours is that the lead in [7] is a square lattice without SO
interactions while our lead is still a honeycomb lattice with
SO interactions except that the Rashba SO interaction has been
switched off in leads 2 and 4. The use of the square lattice as
a lead has two consequences. It provides additional interfacial
scattering between the scattering region and the lead due to
the lattice mismatch and the mismatch in SO interactions. In
addition, the dimension of the self-energy matrix for the square
lattice lead with SO interaction is much smaller. The spin
Hall conductance GsH can be calculated from the multi-probe
Landauer–Buttiker formula [8, 12]:

GsH = (e/8π)[(T2↑,1 − T2↓,1) − (T2↑,3 − T2↓,3)] (2)

where the transmission coefficient is given by T2σ,1 =
Tr(�2σ G r�1Ga) with G r,a being the retarded and advanced
Green functions of the central disordered region, which can
be evaluated numerically. The quantities �iσ are the linewidth
functions describing coupling of the probes and the scattering
region and are obtained by calculating self-energies �r due to
the semi-infinite leads using a transfer matrix method [14]. In

1 Here we follow the same labeling scheme as [7].

(a)(a)

(b)

Layer 1

Layer 2

Layer 3

Figure 1. Schematic plot of the four-terminal mesoscopic sample
where the intrinsic SO interaction exists in the center scattering
region and leads 1 and 3 and the Rashba SO only exists in the center
part and leads 1 and 3, when the spin Hall conductance is measured
through leads 2 and 4.

the following, our numerical data are mainly on a system with
n = 8 or 32 × 65 sites in the system. To fix units, throughout
this paper, we define the Fermi energy E , disorder strength
W , intrinsic spin–orbit coupling Vso and Rashba spin–orbit
coupling Vr in terms of the hopping energy t .

For the four-probe device, the conventional transfer matrix
that is suitable for two-probe devices can no longer be used.
Below, we provide a modified transfer matrix method for the
four-probe device. Note that the self-energy �r is a matrix
with non-zero elements at those positions corresponding to
the interface sites between a lead and the scattering region2.
Because evaluating the Green function G r corresponds to the
inversion of a matrix, a reasonable numbering scheme for the
lattice sites can minimize the bandwidth of the matrix and thus
reduce the cost of numerical computation. For example, to
obtain the narrowest bandwidth for our system we partition
the system into layers shown in figure 1(b) so that there is
no coupling between the next nearest layers. We then label
each site layer by layer from the center of the system (see
figure 1(a)). As a result, the matrix E − H − �r becomes
a block tri-diagonal matrix:

E − H − �r =

⎛

⎜⎜⎜⎜⎜⎝

A1 C1 . . . .

B2 A2 C2 . . .

. . . . . .

. . . . . .

. . . . Am−1 Cm−1

. . . . Bm Am

⎞

⎟⎟⎟⎟⎟⎠

2 In the presence of intrinsic SO interaction the lead couples to the sites on the
two layers in the interfaces.
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where An is a (128n − 56) × (128n − 56) matrix, Cn is a
(128n − 56) × (128n + 72) matrix, and Bn is a (128n −
56) × (128n − 184) matrix. Here n = 1 corresponds to the
innermost layer and n = m is for the outermost layer. A direct
inversion of this block tri-diagonal matrix is already faster than
the other labeling schemes. However, if we are interested in
the transmission coefficient, it is not necessary to invert the
whole matrix. This is because the self-energies of the leads are
coupled only to Am of the outermost layers; from Landauer–
Buttiker’s formula it is enough to calculate the Green function
G r

mm which satisfies the following Equation:

(E − H − �r)

⎛
⎜⎜⎜⎜⎜⎝

G r
1m

G r
2m
.

.

G r
m−1m

G r
mm

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

0
0
.

.

0
Im

⎞
⎟⎟⎟⎟⎟⎠

where Im is a unit matrix of dimension m. In general, the
solution Xi of the following equation with block tri-diagonal
matrix can be easily obtained.
⎛

⎜⎜⎜⎜⎜⎝

A1 C1 . . . .

B2 A2 C2 . . .

. . . . . .

. . . . . .

. . . . Am−1 Cm−1

. . . . Bm Am

⎞

⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎝

X1

X2

.

.

Xm−1

Xm

⎞

⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

R1

R2

.

.

Rm−1

Rm

⎞
⎟⎟⎟⎟⎟⎠

.

From the first row

A1 X1 + C1 X2 = R1,

we have
X1 + A−1

1 C1 X2 = A−1
1 R1.

From the second row,

B2 X1 + A2 X2 + C2 X3 = R2,

eliminating X1, we have

(A2 − B2 A−1
1 C1)X2 + C2 X3 = R2 − B2 A−1

1 R1.

This equation can be written as

F2 X2 + C2 X3 = D2,

where

F2 = A2 − B2 A−1
1 C1, D2 = R2 − B2 A−1

1 R1.

From the third row,

B3 X2 + A3 X3 + C3 X4 = R3,

eliminating X2, we have

F3 X3 + C3 X4 = D3,

where

F3 = A3 − B3 F−1
2 C2, D3 = R3 − B3 F−1

2 D2.

Therefore, we have the following recursion relation:

F1 = A1, initial
Fi = Ai − Bi F−1

i−1Ci−1, i = 2, 3, . . . , m
D1 = R1, initial
Di = Ri − Bi F−1

i−1 Di−1, i = 2, 3, . . . , m.

Finally, we have
⎛

⎜⎜⎜⎜⎜⎝

F1 C1 . . . .

. F2 C2 . . .

. . . . . .

. . . . . .

. . . . Fm−1 Cm−1

. . . . . Fm

⎞

⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎝

X1

X2

.

.

Xm−1

Xm

⎞

⎟⎟⎟⎟⎟⎠

=

⎛

⎜⎜⎜⎜⎜⎝

D1

D2

.

.

Dm−1

Dm

⎞

⎟⎟⎟⎟⎟⎠
.

From the last row, we can solve for Xm :

Xm = F−1
m Dm .

We can cancel Xm in the last but one equation

Xm−1 = F−1
m−1(Dm−1 − Cm−1 Xm).

In our case, Xi = G r
im and Ri = δim Im and we are only

interested in the solution Gmm . Hence we have the solution

G r
mm = F−1

m

where

F1 = A1,

Fi = Ai − Bi F−1
i−1Ci−1, i = 2, 3, . . . , m.

To test the speed of this algorithm, we have calculated the
spin Hall conductance for the four-probe graphene system with
different system size labeled by n on a Matlab platform. The
calculation is done at a fixed energy and for 1000 random
configurations. The cpu times are listed in table 1, where
the speed of direct matrix inversion and the algorithm just
described are compared. We see that the speedup factor
increases as the system size increases. For instance, for n = 8,
which corresponds to 2080 sites (amounting to a 4016 × 4016
matrix) in the scattering region, a factor of 100 is gained in
speed. We note that in the presence of intrinsic SO interaction
the coupling involves next nearest neighbor interaction. This
is the major factor that slows down our algorithm. As shown
in table 1, for a square lattice without intrinsic SO interaction
but with Rashba SO interaction, the speedup factor is around
200 for a 40 × 40 system (matrix dimension 3200). The

3
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Table 1. The cpu times for different system sizes using different methods are calculated at a fixed Fermi energy for 1000 random
configurations.

A four-probe graphene A four-probe square lattice

System size n Direct method (s) Our method (s) System size L Direct method (s) Our method (s)

6 14 803 383 30 5 102 53
7 31 491 606 40 29 337 152
8 104 275 958 50 89 917 309

Figure 2. Phase diagram of IQSHC on the (E , Vso) plane for W = 0
and Vr = 0. The curve separates the IQSHC regime and the spin Hall
liquid regime.

new algorithm is particularly useful when a large number of
disordered samples and different sample sizes are needed for
the calculation of the conductance fluctuation and its scaling
with size. Finally, we wish to mention that this algorithm also
applies to multi-probe systems such as six-probe systems.

3. Numerical results

It has been shown that in the presence of disorder or Rashba
SO interaction the QSHE may be destroyed [7]. As an
application of our algorithm, we study the phase boundary
between regimes of the integer QSHE regime and the QSH
liquid in the presence of disorder. For this purpose, we set a
criterion for the QSH; i.e., if GsH � 0.999 we say it reaches
an integer quantum spin Hall plateau (IQSH). Since the integer
QSHE is due to the presence of intrinsic SOI, we first study the
phase diagram of a clean sample in the absence of Rashba SOI,
i.e. the two-component Haldane’s model [9]. For this model,
there is an energy gap within which the IQSH effect exists.
Figure 2 depicts the phase diagram in the (E, Vso) plane with
a curve separating the integer QSHE and SHE liquid. We see
that the phase diagram is symmetric about the Fermi energy
E and the integer QSHE exists only for energy E < 1 that
corresponds to the energy gap. Figure 2 shows that the energy
gap depends on the strength of intrinsic SO interaction. When
Vso � 0.2 the energy gap is the largest between E = [−1, 1],
while for Vso < 0.2 the energy gap gradually diminishes to
zero in a linear fashion. Our numerical data show that for
Vso < 0.025 the IQSHE disappears (see figure 2). Between
Vso = [0.025, 0.18] the phase boundary is a linear curve.
When Vso > 0.20, the phase boundary becomes a sharp vertical
line.

Figure 3. Spin Hall conductance versus electron Fermi energy for
Vr = 0, 0.1, 0.2, 0.3 on the N = 32 × 65 sample. (a) For W = 0 and
Vso = 0.1; (b) for W = 0 and Vso = 0.2.

For Haldane’s model, σz is a good quantum number.
However, in the presence of Rashba SOI the spin experiences
a spin torque while traversing the system. This can destroy the
IQSHE at large enough Rashba SOI strength Vr. In figure 3,
we show the spin Hall conductance GsH versus Fermi energy
at different Vr when Vso = 0.1, 0.2. In figure 3(a) we see that
when Vr = 0 the spin Hall conductance is quantized between
E = −0.52 and +0.52. As Vr increases to 0.1, the energy
gap decreases to −0.22 and 0.51. Upon further increasing Vr

to 0.2 and 0.3, the gaps shrink to, respectively, [0.06, 0.50] and
[0.34, 0.46]. In [7] the IQSHE is completely destroyed when
Vr = 0.3, which is different from our result. The difference
is due to the lead used in [7] that causes additional scattering.
The larger the intrinsic SO interaction strength Vso, the more
difficult it is to destroy the integer QSHE, as can be seen from
figure 3(b).

In the presence of Rashba SO interaction the phase
diagram in the (E, Vr) plane at different intrinsic SO
interaction strengths is shown in figure 4. We see that the
phase diagram is asymmetric about the Fermi energy and it is
more difficult to destroy the integer QSHE for largest positive
energies within the energy gap, e.g. near E = 0.51 when Vso =
0.1. Similar to figure 2, we see that when Vso > 0.2 integer
QSHE can exist for all energies as long as |E | < 1. Roughly
speaking, the energy gap decreases linearly with increasing
Rashba SOI and there is a threshold Vr beyond which the
integer QSHE disappears. For instance, when Vr > 0.3 and
Vso = 0.1, the integer QSHE is destroyed.

From the above analysis, we see that Vso = 0.2 is an
important point separating two different behaviors in (E, Vso)
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Figure 4. Phase diagram for integer quantum spin Hall conductance
on the (E, Vr) plane. Squares, circles, left triangles and right
triangles are for Vso = 0.1, 0.2, 0.3 and 0.4, respectively. The areas
encircled by the curves and the Vr = 0 line are the integer quantum
spin Hall conductance regimes for different intrinsic SOI.

Figure 5. Phase diagram of IQSHC on the (E , W ) plane for different
Rashba SO couplings in the presence of (a) Vso = 0.1 and
(b)Vso = 0.2. Squares, circles, stars and rhombuses are for Vr = 0,
0.1, 0.2, 0.3. The areas encircled by the curves and the W = 0 line
are the IQSHC regimes for different Rashba SOI.

and (E, Vr) phase diagrams. Now we examine the effect of
disorder on the QSHE. Figure 5 shows the phase diagram
of integer QSHE on (E, W ) at two typical intrinsic SO
interaction strengths Vso = 0.1 and Vso = 0.2. The phase
diagrams are asymmetric about the Fermi energy. Generally
speaking, the larger the Rashba SO interaction strength Vr,
the smaller the energy gap needed for integer QSHE. We
already see from figure 4 that the integer QSHE is more
robust against Rashba SO interaction strength Vr at positive
Fermi energy within the energy gap. In contrast, it is small
Fermi energies within the energy gap that are stable against the
disorder fluctuation, especially for large Rashba SO interaction
strength. In addition, the phase boundary at positive Fermi
energy is not very sensitive to the variation of Rashba SO
interaction strength. The larger the intrinsic SO interaction, the
larger the disorder strength Wc needed to destroy the integer
QSHE. In figure 6, we estimate this critical disorder strength
Wc and plot it versus Vso for E = 0.01 and Vr = 0.

Figure 6. The critical disorder strength versus intrinsic SO coupling
Vso. The corresponding Fermi energy is E = 0.01 and Vr = 0. The
spin Hall conductance in the regime encircled by the curve and the
Rashba SOI axis is well quantized.

If we replace the Rashba SO interaction by the
Dresselhaus SO interaction, we have numerically confirmed
that the phase diagram of IQSHC in the (E, W ) plane is the
same if we change E for −E .

In summary, we have developed a variant transfer matrix
method that is suitable for multi-probe systems. With this
algorithm, the speed gained is a factor of 100 for a system of
2080 sites with the next nearest SO interaction on a honeycomb
lattice. For the square lattice with Rashba SO interaction, the
speed gained is around 200 for a 40 × 40 system. Using this
algorithm, we have studied the phase diagrams of the graphene
with intrinsic and Rashba SO interaction in the presence of
disorder.
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